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ABSTRACT 

I. 

Pireto surfaces and attainable sets of complexity 1 (i.e., those having 

a l-coiumodi*/ representation and no O-comcodity representation) are treated. 

An implicit characterization of these sets is given, and various of their 

properties are derived. In particular, Pareto surfaces of complexity a^ raost 

1 are always closed ses. 
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SI.  INTRODUCTION 

In [3], the authors define and characterize the attainable sets and Pareto 

surfaces for systems of n concave, continuous real functions defined on the 

unit m-cube I . In that work, the notion of complexity of an attainable set 

(and its as..-rciated Pareto surface) is defined and briefly discussed. It is 

the purpose of this paper to study those attainable sets and Pareto surfaces 

having complexity equal to 1. We shall fjive an implicit characterization of 

complexity 1 attainable sets and derive some of its consequences. One of these 

is that complexity 1 Pareto surfaces are always closed. 

Let I 0 [0,1]  bs the unit m-cube, where ra is a positive integer. 

We take 1° = {0}. For m > 0, let en = (1,...,1) e Im, and take e0 » 0. 

Let m >, 0, and suppose u.: I -*■ R are concave, continuous functions for 

i = 1,.. .,r 

Definition 1.1: The attainable set for u,,...u  is the set —  I n 

(1.1.1) i,      i      ,m n 
V =  {x e Rn|x.  < u (y ); y    e  lm,     ^ y1 = em}. 

1 i-1 
S 
5    'I 

The Pareto surface for    u.,...,u      is the set   1 n 

(1.1.2) P = {x E V|y e V, y > x ^ y = x}, 

I 

In [3], attainable sets in P.  are characterized as all sets of the form 

C - R , where C c R  is compact and convex, R « [O,00) , and the minus 

denotes algebraic subtraction of sets. By definition, the Pareto surface 

associated with an attainable set V is the set of all maximal elements of V 

with respect to the normal partial order on R .  A set P is a Pareto surface 

1 
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: 

if and only if P is bounded, P contains no two distinct comparable elements, 

and P - Rn is closed and convex (see [3]). Pareto surfaces need not be 

closed sets. 

Let    V   be an attainable set in   R .    If   u, ,...,u      are continuous, 
1'  ' n 

concave functions on I , for some m, such that V is given by (1.1.1) 

for these u,'s, then the u.'s will be called a representation for V over 

I . We define the complexity of V (denoted com V) to be the least m > 0 

such that there exists a representation for V over I '. The complexity of 

a Pareto surface P will be defined to be the complexity of the associated 

attainable set V « P - Rn. 

It is easy to see that com V = 0 if and only if V «* {x} - R  for 

some x e R  (and this implies a unique complexity 0 representation: 

u. = x. on I ). Such a set will be called a comer (or a comer on x). 

A corollary of the characterization of [3] is the fact that com V < n(n-l) 

for any attainable set in R . There it is conjectured that this number can 

be reduced to n-1. This conjecture is easily verified for n =» 1 and 2,    but 

remains unsettled already for n » 3. Our approach here will be somewhat 

different: ve will consider those attainable sets in R  having complexity 

1, w»ere n is unspecified. 

The idea of considering attainable sets and Pareto surfaces arises in 

n-person game theory and mathematical economics. For work related to this 

subject, see [2], [4] and (5J. 

§2. A CHARACTERIZATION OF COMPLEXITY 1 ATTAINABLE SETS 

Tnroughout the remainder of the paper VCR  will be an attainable set, 

Denote N ■ {!,...,n). The following lemma allows us to extend concave 

^ 
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nondecreasing functions without destroying concavity. 

Lenma 2.1: Suppose a < b < c and f: [a,b] ->- R is concave, continuous and 

nondecreasing. Define g: [a,c] -► R by g|li,b] » f and g(x) « f(b) for 

x e [b.c]. Then g is concave, continuous and nondecreasing. 

Proof: The function g is clearly continuous and nondecreasing. It is 

concave on la,b] since f is, and it is concave on [b.cj since it is 

constant. Thus to prove concavity of g on [a,c] it suffices to take 

x e [a,b), y e (b,c], a c (0.1) and show g{ax + (l-a)y) > ag(x) + (l-a)g(y), 

Put    z » ax * (l-a)y.    If   z ^ b   then since   g   is nondecreasing we have 

g(z) >,max{g(x), g(y))    which implies 

g(0  ■ agU) ♦  (l-a)g(z) i agCx) +  (l-a)g(y).    Assume    z < b.    Define 

a'  e (0,1)    by    z » a'x + (l-a'jb,    i.e.,    a' « (b-z)/(b-x).    Then 

^ ■ (y-z)/(y-x) > a'    since    y > b.    Hence 

g(z) = g(a,x ♦ (1-aMb) 

> «•g(x) * (1-a )g(b) 

= a'g(x) ♦ (l-a')g(y) 

> ag(x)  ♦  (l-a)g(y) 

where the first inequality follows because   f   is concave and the second 

inequality fallows because    R(y) >, g(x)    Implies    3g(x) ♦ (l-a)g(y)    is a 

nonincreasing function of   a        jjj 

Theorem 2.7,    If    com V » 1    'hen    V    can be given a complexity 1 representa- 

tion with all    u.    nondecreasing. 

[ 
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Proof: Let u.: [0,1J -»■ R, i e N, be a representation of V. (Thus the 

u.'s are continuous and concave.) For i c N let m. be such that 
i i 

u.On.) » IMU{U.(X)|X e [O.lJK We define {u.: [0,1] •*■  R|i e N} as follows. 

If  ^ m, > 1 put 
icN 1 " 

(x)   x e (0,m.] 
(2.2.1) - ' i u.Cx) - { i 

i.u. (m.)  x E (in. ,1], and 

if  J m. < 1 put 
ieN 1 

(2.2.2) 
/u (m.)  x c [0,m.J 

u.(x) »! 1 1 1 

'^(x)   x e (ni.,11 

Suppose we have the case  ^ s ; 1. Then u. are concave, uondecreasir.g 

and continuous by Lemma 2.1. We must show they generate V. Since u, > u., 

IeN, it follows that V c {x c Rn|x. < ü. (y.); y. > 0, Jy. ■ 1}. Conversely, 

suppose x c R , xi < u^y^, yi >, 0, lyi = 1.    Suppose yk > "^ for some 

k e N. Since  £ m. > 1 there exists an ieN such that y. < mff. But 
ieN 

then y.  can he decreased and y  incx-eased so that  T y. = 1 is maintained, 

u, (y.) is unchanged and UAYV)    is at worst increased. Thus we may assume 

that y < m  for all i e N.  But then x. < ü. (y.) = u.(y.), ieN, which 

implies x e V. This completes the proof if  £ m. ^ 1.  In case  J m. < 1 
icN 1 ieN 1 

the proof is similar.  In particular the u. are nonincrcasing, concave and 

continuous since u.(l-x)  is nondecreasing, concave and continuous by Lemma 2.1, 

It is a consequence of the above arguments that we may now assume v has 

a representation with all u. nonincrcasing.  In this case we define u., 

i e W,  by 

i , 

I 
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i 

u.W 
^(1 -  (n-l)x)        x e  [0.1/(n-l)l 

Lu u.(0) x e (l/(n-l),ll. 

The u. are continuous, concave and nondecreasing by Lemma 2.1. Let V be 

the attainable set for u, ,...,u . To see that V ■ V take x. > 0, in i " 

i x. " 1   so that    2 » (u. (x.),...,!! (x )) e 7.    As above it follows that we 
icN 1 i    1 n   n 
may assume   x. <_ l/(n-l), i c N,    since each   u.    is constant for   x, > l/(n-i) 

Put y. « 1 - (n-l)x.. Then y. > 0,  I y4 » I[l - (n-l)x.) * 
1 l 1 _  ieN 1  ieN        1 

n - (n-l) ^ x. ■ 1 and u.(y.) « u.Cx.) for each i. Thus z E V. Con- 
ieN 

ve. sely, if Xj, ^ 0 and  ^ x. ■ 1 so that z = (u.Cx.) ,... ,u (x )) e V, 
ieN 

then let yi » {l-xj/in-l),    Then y. > 0,  I y. ' 1 and üi(yi) » u^x^, 
ieN 

»o z e V. This completes the proof.  [] 

Remark: One cannot in general make the u. nonincreasing. This follows from the 

observation that if com V = 1 and V has a nonincreasing representation, 

then there is z e V, ieN, where z. = b. » sup{x.jx c V} for j >* i 

and z. is "sufficiently small." To prove the observation note that if the 

u. are nonincreasing then u.(0) = b.. For an excmple consider 

V = coav{(l,0.0),(0,1.0),(0,0.1)} - R^ given by the utilities u^x) » x, 

x e [0,1]. There is no x e V with x. « X- - 1. 

Lemma 2.3: Suppose X. > C and c. e R, ieN, Then com V a m if and 

only if com({y e R |y. = A.x. + c. , x e V}) = m. 

Proof: If (u |i c N} is a complexity m representation for V then 

{X.u ♦ c.|i e N) i a complexity ra representation for 

{y e R ly, = X.x. * c.,  x e V}. For the converse, take X. » 1/X, and 

BaHE^t maumm nirtiMMtiiriiiiBii 
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n 
Since every attainable set is of the form C - R  where C is compact 

and convex, it is a consequence of Lemma 2.3 that we may (and will) assume 

every V satisfies 

(2.4) b.  = sup{x. |x c V} = 1    for each   i e N,    and 

(2.5) P C R' n 

[ 

I 
I 
1 
I 
I 

Lemma 2.6: If com V » 1 then there ar» nondecreasing, nnnnegative functions 

(u. |i c N) which represent V am* satisfy u.(l) »  1 for i e N. 

Proof: By Theorem 2.2, we may assume we have a representation with all the 

u. nondecreasing. Let m. ■ inf{x|u.(x) > 0}. We must have  ^ m. « 1 by 
leN 

(2.4) and (2.5). For if  ^ m, > 1, then whenever  £ x. = 1, we must hive 
ieN 1 icN 1 

an i such that x. < m., From thi^ we conclude that each y e P has a 

negative coordinate, contrary to (2.5). If  J m. = 1, then we must   e 
ieN 1 

P = (0) by (2.5), which contradicts (2.4). 

For each ieN, define u. : [0,1] ■* R  by 

u (x) « ui([l - I  m,]x + m ) 
jeN J 

The    u.    are clearly nondecreasing,  concave and continuous,  as well  as non- 

negative    (u.(0)  = u,(ra.)  > 0).     We first show- that    {u.|i e N}    represents    V. 

To this end take    y c I      such that      [ y.  » 1.    Put    x.  =  (1  - [ m )y.  ♦ m.. 
ieN 1 1 jeN ^    1        1 

ail IlMMMWl Mit ■- /--" miMliiiiMiai  _^i 
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l: Then    x. 

- 

'i i 0.      I x. » (1 - J m.) J y. ♦    I m. = 1    aj.d    u (y ) » u (x ). 
1              ieN 1     n      jeN •'  ieN 1      ieN ' 1    X          ^    1 

Conversely, take   x c I      such that      ][ x.  » 1 and    (u. (x.),... ,u (x )) e P. 
icN 1 11             n    n 

Then    u. (x.)  > 0   by (2.5), and hence x.  >; m.. Put   y.  » (x,-m.)/(l- J m.). 
1 l        1                x         1 _*          AeN J 

Then   y. 4 0, I y^ * 1    and   u. (y.) * u. (x.). This proves    (u. |i e N} 
1 ieN 1                      i    i I    i                                  i 

represents    V. 

To show that   u.{l) « 1    for each    i,    note first that (2.4)  implies 

^(x) < 1    tor   x E [0,1].    Since   V ■ C - R ,   C   compact, it fol'.ows from 

(2.4)  that, for each   i,    there exists    x e V   such that    x,  «• 1.    But the   u. 

generate    V,    so that -here is a    t.   r  [0,1]    such that    u^t.) >  1.    Thus   ü. 

nondecreasing implies   u.(1) =1.    [] 

Theory 2.7:    Assume   \l   satisfies  (2.4),  (2,5) and    com V > 1.    Then    com V = 1 

if and only if   V « (x E In| I h.(x.j  = 1}  - Rn   wher«, for each    i, 
icN 1    1 * 

h.  =  [0,1] •* [0,1]    is convex, nondecreasing and continuous, and    h.(0) «» 0. 

Further    P C (x e In|  I h.(x,)  = 1}    and    V 0 In = {x e In|  ^ h. (x.)   < 1}. 
ieN 1 1 ieN 1 1 

Proof: Suppose com V = 1 and take a representation {u.|i e N} as specified 

in Lemma 2.6. Let m. = inf{x e [0,l]|u. (x) ■ I}. By continuity u.(m.) = 1, 

By concavity u. is strictly increasing on (0,m ] and hence, by continuity, 

a bisection of [0,m.} onto [u.(0),l] c [0,1]. Let h. be the inverse of 

u.; h. : [u.(0),l] ■»■ [O.m.]. h. is clearly convex, nondecreasing and 

continuous.  Extend h. to be defined on [0,1] by h.(x) * h.(u.(0)) ■ 0 

for x e [0,u.(0)). Thus extended -h.(l-x)  is concave, nondecreasing and 

continuous by Lenma 2.1. We conclude that h. is convex, nondecreasing and 

continuous. 

To complete this half of the proof it remains to show 

V • (x e I | £ h. (x.) = 1} - R . For this it suffices to verify 
ieN * x 

I 
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P c {x e In! j; HMX.) = 1} c v. Take x e P. Then x » (u. (y ).... ,u (y )) 
ieN i i     n n 

for y. 4 0,  ^ y. a 1. From com V ^ 1 we deduce y. < m.  for some 
ieN 

k c N, and so if y. > m. for some ieN then there exists an x >_ x 

with JT c V and x. > x. . This contradiction to x e P proves y. 4 m. 

for all i e N  Thus I h. (x.) » I h. (u.(y.)) = I y, a 1, and so by (2.4) 
n ieN 

1 1   ieN 1 1 1    ieN 1     n 
and (2.5) x e (x e I | || ii.(x.) ■ 1). Now suppose x e {x e I | J] h.(x.) ■ 1}. 

ieN 1 1 ieN 1 1 

Note that h.(x.) ^0. Further since u.h,(x) » x for x e [u.(0),l] and 

u.h.(x) «> ui(0)  for x e [0,u.(0)]  it follows that u.h. (x.) > x.. Thus 

x e V, 

To prove the second half of the theorem suppose 

V = (x e 1   I   £ h.(x.) = 1} - R     with the    h.    as specified in the theorem. 
ieN 1    1 1 

Put   m.  ■ sup{x e  [0,l)|h.(x) =0},    i c N.    As in the first part of the proof 

h.    is a bijection of    (m. ,1]    onto    [0,h. (1)),    Again, as in the first part 

of the proof we let   u.    be the ir verse   >f   h.    and extend    u.    to    [0,1]    by 

u.(x)  s 1    for   x e [h.(l),l]    obtaining a continuous, concave and nondecreasing 

function.    By assumption    rom V ^ 1.    To show    com V = 1    we show 

P c {y ' R^y.   < u.(x.), x.  > 0, ^ xi ■=  1} c V.    Take   y e P.    By the 
ieN 

definition of    P    it fo'lows from   V = {y e Rn|   ^ h. (y.)  = U - R"    that 
ieN 1 

^h.(y.) a 1.    But    h.(y.) > 0    by assumption.    Further   u.h. (n)  = a    for 

a > n.     and for    a < tn.    u.h. (a) = m.     so that    u.h.(y,) > y..    Conversely, 
—   1 iii'i 1 i 'i   "•'i 

suppose   y e Rn,    y. < u.(x.),    x. > 0    and     Jl x. = 1.    It is easy to see 
1-11 1 - icN 1 

that wc may assume    x   4 h.(l)    f< r each    i.    Otherwise   V    is the comer on 

(1,...,1)    and    com V ■ 0.    Hence     I h.u.(x.) *    [ x. = 1    and so   y e V. 
ieN 1  1    1        ieN 1 

Finally,    V n In » (x c In|  ][ h.(x )   < 1)    is a consequence of the    h.'s 
ieN 1    l 

beiag nondecreasing and continuous.       [1 

mm --^iiiiiir 1    1 innifin    .».m*.^     . ^ ._ ^..^     -. .   Ä B 



iPIWi^»IB|BPilWPBI^PI|P!!W^^ 

1    I     I 
f      i.        dp 

Example:    It follows from Theorem 2.7 that for an irceger    ri >, 2, 

coo (s""1^")  - 1    with   h.(t)  - t2,    where   s""1    is the    n-1    sphere in    Rn. 

A set    {u.|i e N}    which represents    S "    - R+    is given by    u.{t)  ■ St. 

i 

!i 

V 

S3.    SOME FURTHER PROPERTIES 

We assume (2.4) and (2.5)  throughout this section.    Unless otherwise 

stated we will also use the convention that   h.    denotes a convex, nondecreasing, 

continuous function from    (0,1]    to    [0,1]    which satisfies    h.(0)  ■ 0. 

Theorem 3.1:    com V <_ 1    implies    P    is closed. 

1   I 1      ft 

T 
i 

i      I I     * 

I 

I 

I 

r 
i 
i 

i 

Proof:     If    com V « 0, P    is a single point, and therefore closed. 

iu^se    com V » 1.    We have    P C {x e In|   \ h.(x.)  = 1} c y    by Theorem 
ieN 1 2.7.    To show    P    is closed take    (x-') c P    with    xJ ■* x.    We show    x e P. 

By continuity     ^ h.(x.) = i.    li   x t ?    there exists    x e P   such that 
_   ieN 1    1 

x > x    and    x,   > x,     for some    k e N.    Since each   h.    is increasing this 

implies    hj-ÖO " ^v^x.)    and hence    h. (x) «» hv^)    for   x e  l0»5^!'    But 

xjj -•• x.     implies    xr  < x,     for sufficiently large   j.    For such a large    j 

t. a x. 
i   i 

let  ' = x^  for i ^ k and XJ* = x. .  Then xJ e V, xJ >, x-1 and TJ rJ J 

tr   > x^    contradicting   x-1  E P.    We conclude    x e P.    \\ 

Example:    Let 

■to 2 
A = {x e  R+|x1  ♦ x- « 1,  A2 ■ 0}, 

B = conv  (A U ((0,1,1)})    and 

V = B - R  . 

ittiniiirriii '-   -   üüi   lg ...^.^. Ml   1T—riMiiir   If!'    -iin i      TI1!   n     rt\t  n^^mrtM^tf^--'^-■'J—>:l'-^-^-'-'i----^L^™ 
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Thtn    P - B\{x c R^lr.  ■ 0, X, » 1    and    x- < 1}   which is rot closed  (see 

[1]).    Thus    com V > 2,    To see that    com V * 2   define   {u.  » I   ♦ RJi e N} 

by   u2(x,y)  » x,    ut(x,y) = y    and 

I 

Ujtx.y) = sup{z|(z,l-x,l-y) e V}. 

u.    is concave and continuous since    V    is convex and closed, and   u      is 
2 

defined over a polyhedral set (namely    I  j. 

Define    a,    and    b.,    i e N,    by 

a,  ■ inf{x.|x e P}    and 

i 
— 

i 

I 

b.  » sup{x.|x e P}  a sup{x.|x e V}. 

By (2.4), we have that   b, » 1    for each    i. 

Theorem 3.2:    Suppose that   V   satisfies    a.  * 0    if    a. < 1,    and    com V j< 0. 

Then   com V ■ 1    if and only if   V =» (x e In|   I h.(x.) * 1} - Rn   where   the 
ieN 1    1 * 

h.    are strictly increasing when    a.  » 0    and constant when    a.  » *. 

Proof:    If    V ■ {x c In|  I h.(x.) = 1) - R"    then by Theorem 2.7,  com V ■ 1. 
icH       1 

Suppose    com V » 1.    By Theorem 2,7 we have   V = {x e In|  ^ h, (x.) »  1} - 
ieN 1    1 

where the    h.    are as specified at the beginning of this section.    Suppose 

k c N    and    a.   ■ 0.    Then by Theorem 3.1 there is an    x c P   such that 

,n 

0. By Theorem 2.7     I h.(x.) «= 1.     If   \    is not strictly increasing 
ieN 

then by convexity since   h,    nondecreasing there is a      t > 0    such that 

hk(t)  « 0.    Define    x c  Rn   by    Xj - Xj    for    i tk    and   x.   = t.    Then 

i 

—*—^ -——-  ' »»^x^-  . . ^l^t     **.* 
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^ h.(x.)   »  1    which implies    x e V    contradicting    x e P.    H«nce,    h.     is 

strictly increasing.    Assune    a,   =» 1.    Let    m.  ■ sup{t|h. (t)  * 0}    for each 

i.    Since   h. (0)  = 0   we wish to «how   BL» 1  (i.e.,    m. = a.    for eacli    i). 

We claim that    A = {x e In|x,  > m. ,    I h.(x.)  = 1> -= P.    Clearly    P c A. 
1    icN 1    1 

A c p    follows because every   h.     is convex and ncndecreasing and so 

t    > t    > m.    implies    h.(t )  > h.(t2).    This proves the claim.    Suppose 

m.   < 1    and let    x e  I      be defined by    x.  =»  1    for    i /< k    and    x.« m. . 

If      E h. (x.) < 1,    we note that      ^ h.(l)  >  1    since    com V j* 0    so that by 
ieN 1    1 ieN 1 

continuity there is an    x > x    with    1  > x.   > x,     such that      £ h.(x.)  =  1. 
ieN 

By the claim, we have    x e P,    contradicting    a,   =  1.    If     |[ h.(x.)  >. 1    we 
K .,,11. 

ieN 
note that  ^ h. (m.) « 0 so that by continuity there is an x ^ x with 

ieN 1 1 

x. > m,  for each i, x. = m,  and  J h.(x.) » 1. The claim then implies 
XI K K .    _      1        X 

_ icN 
x c P    contradicting    a^ = 1.    We have proved that the assumption    m.   < 1    is 

untenable,  and thus that    h.   H 0.     fl 

We now observe some corollaries of Theorem 3.2 and ivs proof. 

Corollary 3.2.1:    Suppose   V = {x e In|   I h. (x.)  =  1} - Rn .    Then if   a.   = 0, 
leN * 

h.    is strictly iricreasing and if    a.  » 1, h.   = 0.     Q 

Corol lary 3.2.2:  Suppose V = {x . In| ^ h.(x.) = 1} - R". Then 
ieN 

P = {x e I x. > a., y h,(x.) = 1) and thus if a. = 0 for each i, 
' i =- i  .\. iv i' i teN 

P - {x e  In|  ^ h.(x.)  = U.    Q 
icN  1 

One can see either directly cr from Corollary 3.2.1 that components    i 

for which    a.  = b.    do not affect complexity.    Thus, in future results we will 

mane the absumption that    a.  = 0    for each    i  c N.    By Corollary 3.2.1 this 

assumption implies that the   h.    are strictly increasing. 

- ■-■-—  ^-'"- - .     -         ■ , ..(.-«M^ai^u»- iiiMiiiiilMMii  

■■ ...■■ 
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Before giving the next result we introduce some necessary notation.    If 

x e R     and    S c N   we fS")       Is' let   x       e R'   '    denote the vector with components 

Js| x.    for   i e S    (i.e., the piojection of   x   onto    R1   ').    Given   V    and 

t c l""'3'    define    VS(t)  = {x(S)lx e V. x^^» t}.    For    U.j} CN    we use 

the conventions    V1':'(t)  = V{x,j}{t)    and    Vi(t)  = Vtl}(t).    By Theorem 2.3 

of [3],    V (t)    is an attainable set so that we are justified in taking its 

Pareto surface    P (t), 

Theorem 3.3:    If    com V = 1,    a.  « 0    for all    i  e N,    S c N,    and 

t1 »< t2 c ln"'S'    with    t1<t2,    then    x  s PS(t1)  fl ^(t2)    implies    x = e|S'. 

If    js|  » n - 1    then    PS(t1) n VS(t2) = 0. 

Proof:    Suppose    x e PS(t1) 0 V5^2)    (this implies    S / 0).    From (2.5),  it 

follows that    x > 0.    By Theorems 2.7 and  3.2,    V n in = {x e In| ^ h. (x.)  <  1} 
ieN 

where the   h.    are strictly increasing. 

Take   y! z e V    such that   y^* :1.    Z
CN^= t2    and   y™  » z(S> - x. 

12 12. Since   t   ^ t     there is a   k ^ S   such that    t,   < t..    But   h,     is strictly 

increasing so   h. (y.)  < h.(z ).    We conclude that      ) h.(y.) <    I h.(z.)  < 1. 
K    k K    K i.N 1    1        ieN 1    1 

By the continuity of   h. ,    i e N,    we can increase    y.    if   Yi  < ^    and 
c 

maintain     ^ h.(y.)  < 1.    Since this contradicts    x e P (tj,    we conclude 
ieN 1    1 

|S| that   x = e1 To con^lete the proof suppose    S = N\{k}.    By Theorem 3.1 

there is a    w c P    such that    w.   = a.   = 0.    Since    y > w   we deduce    y e P. 

2       1 But    z ^ y   with    z,   - t    > t   =» y.    which implies    y i P   and so    x   cannot 

exist.       Q 

! The following example was discussed in [3]. 
t 

1 Example 
f 

1    1 
I 

ft ̂^^^^^ 

Example:    Consider   V c R     given by   P - R     where    P   is the line joining 

■'  mä 
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the points    (1,0,0)    and    (0,1,1).    Clearly   com V >^ 1.    But 

(0,1) E P1,2i0)  0 VX'2(1)    so    com V > 2   by Theorem 3.3.    A representation 

2 ,  . 
over   I     is given in [3], which shows    com V » 2. 

For S CN and t e In''S' define P^t) = {x(S)|x e P. x(N^ » t}. 

With this notation we have the following result which says essentially that 

the operation of computing the Pareto surface commutes with that of projection. 

Corrilary 3.3.1:    If   com V = 1,    a. * C    for all    i c N,    S CN,    t e In''S' 

and   V^t) ^ 0, then   ^(t) t 9   implies   ^(t) = PS(t)    and   ^(t) = 0 

implies   P (t) ■ e |S| 

Proof: Clearly ^(t) cpS(t). If ^(t) ^0 th( n take x c PS(t) and 

y e V such that (y( ^y^^) = (x.t). If y e P we are done. Else there 

is a z e P such that z > y, z r* y. If z™^ = y^ ^^ = t then 

Z(S) ^ Xf Z(S) ^ x   implies   x^pS(t)    Thus   2(NNß)>t   but   Z(
NN3) ^ t. 

Thir implies    x e V "   (z'      ')   since   x <, z^    ,    and we deduce from Theorem 

3.3 that   x « e'   '.    But then    P^t) t 0    implies    x e P^(t)    and so 

^(t) - PS(t). 

Suppose   ^(t)  = 0    and take    x e PS(t)  t 0    and    y e V such that (y^iy^1^) 

c  (x.t).      Since   ^(t)  =0,    y ^ P.   Take    z e P    such that    z > y, z ^ y. 

Again   ^(t) = 0    implies    z^^^ ^ y^^ 3 t.    Thus by Theorem 3.3, 

x.elSl.      0 

Let us define a proper face of   V   to be a set of the form   v (0) 

where   S CN    (we assume    a.  = 0,    i c N).    A conjecture that seems natural 

is the following.     If    com V < 1    then    V    is uniquely determined by its 

proper faces.    This conjecture is clearly true for    com V » 0    (and false 

1 

JMBU —*— - - ■ —— 
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for   com V ^ 2).    The following example shows  it is  false for   coi,  V =  1. 

Example:    Let    V => S - R..    As we havi already seen,  a representation for 

V    is given by    h  (t) * t      for each    i.    Now for each    i j* j,    V •'(0)    is 

12 
essentially    S    - R . Define   h.:  I -^ I    by 

t//2 t  < 1/V2 
hi^  =    S        / 2  1 )l - /(l-t^/2      t >  1//2, 

and let 

V =  {x e lZ\l h.Cx.) =  1}  -  R^. 

Since the    h.    can be seen to be convex,  continuous and increasing,    V    is 

a complex'ty 1 attainable set.    Now 

^ V^CO)  -  (x e I^h.Cx^   * hk(xk)   =  1}  -  R;. 

Note that    (x.,x,)  e V^CO)    implies that ons coordinate is in    [0,l//2] 

while the other is in    [U/2,l].    Suppose    x^.  < 1//2.    Thus 

X.//2 * 1 -  /(l-xj;)/2 =  1 

if and only if 

.//2 = /(l-xJ)/2 

1 

if and only if 

H ■ ^-v2. 

^^^M^^^M 
r'   if   1     ,-   '   1    ■   iii-i 
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2        2 
tha^ J.S,    x.  + x,   =1. 

J        k 

Hence,    V^CO)  « V^CO)     for each    j t k.    But    {l//3,l//3,l/^3) ^ V    since 

/$,/I > 1,    Thus we have two different complexity 1 attainable seti with 

identical proper faces,  since clearly   V (0)  a v  (C)  =  (-",1]    for each    i. 

Although,  as  illustrated above,    com V ■ 1    and    {v  (0)|S ^ N}    do not 

determine    V    in general, there are some special conditions under which they 

do determine    V.    IVe begin witv. a Icma. 

i 

Lemma 3.4: Suppose V « {x e I  F h. (x.) » 1} - R  and a, = 0 for 
  i M i    i + i ieN 
i e N.    Then if   h.     is   iurjective for some    k e N,  and    i e S,    where 

k e S CN,    then    h.    is determined by   h.     and    V {0}. 

Proof:    Since    V1,k(0)   =  (VS{0) )1'k(0),    we may assume    S =  {i.U.    Take 

x e  (0,1),    Since    h.     is surjective, continuous and strictly increasing 
K 

there will be for a given value    h.(x)    a unique    ye   [0,1]    such that 

h.{x) * hk(y)  a 1.     Let    z t  In   have    zfl'k} =  (x,y)     and    z^V1«^) = 0 

Then     I h.(z.)  =  1    and so    z e P   which implies, by Corollary 3.3.1, 
ieU 1 

({i k})        i k 
z      '    '   e P   '   (0).     Cut  for a given    x    there can be at most one    y    such that 

i k 
(x,y)  E P  '  (0).    Thus    x    uniquely determines    y    which in turn uniquely 

Jetennines    h.(x):  h.(x)   .= 1   - h (y).     Q 

Let    T        ={xeR|yx.   =1}    be the    n -   1    simplex in    R . 

Lemma 3.S:    Suppose    V={xel|[h.(x.)  = l}-R,     and    a.   = 0    for 
ieii        - |Q|   i 

i e iJ.     If    Scii    with    is|   >  2    and    Vo(0) = T1   ' 

i e S. 

then    h.(x)  = x    for 

Proof:    !'e may assume    S =  {i,j}.    Suppose    x e   I      with    x = 0, 

—— ■   -       iiimwriii .-^^■^i^....  ■..■ 
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x.  e (0,1)    and    x.  = 1 -  x..    Then •'  e P  (0)    and so by Corollary 3.3.1 

x e P.    Since      £ h. (x. )  =  1    and   hk(0)  = 0    for each    k    we have 
keN 

h.(x.) ♦ h.(l-x.) » 1.    But then   h.(x.)  « 1 - h.(l-x.)    is concave and convex 

which implies    h.    is affine cOid    h.(l)  =» 1 - h. (0)  ■  1.    Thus    h.(0) = 0 

implies   h.(x)  = x.    Jiirailarly   h.(x) = x.     fj 

Theorem 3.6:    Suppose    V ■ {x e I  j  ^ h. (x.) » 1} - R ,    and    a    = 0    for 
ieN q I„I   , 

i e N.    If   k e S gN    with    |s|  > 2    and    \r(0)  = T1"'     ,    then   V    is 

determined by    {VL(0) |   [F1   = 2, k C L}. 

Proof:    By Lenma 3.5,    h.     is determined by    V  (0)    for some    k e L C S 

with    |L|  = 2.    In fact,    b. (x) * x    and so    h,     is surjective.    Then by 

Lemma 3.4 the   h.    for    i ^ k    are determined by    {V (0) |   j ?.|  = 2, k e L}.   [| 

It is not hard to see that we can replace    {V (0) |   |L|   •■ 2, k e L}    in 

Theorem 3.6 by    {VL(0)|L e B}    wher.     B C {L|L C N}    is such that    L C S 

for some    L e B,    and for each    ieN    there is an    L E B    such thut 

U.k) c L. 

We conclude with a rather curious property of complexity 1 attainable 

sets. 

Theorem 3.7:    Let    VCR      be an attainable set such that    com V = 1    and 

a.  = 0    for each    i.    Suppose    i  ,...,i.     are not necessarily distinct 

elements of   N    where    k >  1 is odd and    i,  = i, .    Suppose also that 

x f...,x,     are such that  for 1 <, j < k,    (x.,x. + 1)  e F ^  J     (0).    Then 

xl r V 

Proof: By Theorem 3.2, we have a representation 

V =  (x c Inl  I h.(x.)  « 1}  - Rr' 
•Mil * ieN 

! 

--■ .     inm.K.iH«. •M. . iMUHMgW  -■    ■inn -——" ■ llll II    Hill I 
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with the h, strictly increasing, and by Corollary 3.2.2, 

P = {x e In| [ Mx.) = 1). 
ieN 1 1 

Now for each j, 1 < j < k, 

i.i 
F j j+1(0) = {x e I2ihi (x ) * h   (x ) = 1). 

j       j + l 

for 1 < j < k - 2, The hypothesis thus implies that h. (x.) = h.  (x. „) 

and hence h. (x ) = h. (x.). Since \   = i  and h.  is strictly increasing 
l-i      A 1.       K IK 1. 

X     =   X 
1        k' □ 

Example:    Let    VCR      be given by 

V = conv (A23 U A13 U A12) 

where .23 {x e R|2'3)|X    ♦ x    = 1}. 

A13 =  {x e R^'^jx    ♦ x3 » 1),    and 

A12 = {x e R^^^Xj » 1 ♦ x2(l-^), Xj >  l/fi) 

U {x r. R|1,2}|X2 ♦ x2 =  1,  XJ  <  1//2}. 

Now the sets    F    (0)    are essentially given by the sets    A    .    Let    i.,...,i7 

be the sequence    3,1,2,3,1,2,3.    Let    (x ,...,x7)  =  (1/2,1/2,/3/2,1-/3/2, 

/3/2,(/3/2-l)/(lV2),(2-/2-/3/2)/(l.^)).    It can be checked that    (Xj,...,^) 

! 

mmmmmiimmmmmäir^m^mm^mmimtmm^mmimm h^.^»... .■■--..     .....- -.... attttäk   ...^i..J,—-tt^i.t-üij 
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ratisfies the vequirements of the theorem, yet    x.  i* x_.    We conclude that 

com V ^ 1.    We could have obtained this concicsion from Lemma 3.5 as well. 

We remark that Theorem 3.7 provides a necessary and sufficient condition 

for the existence of   h.'s,    not necessarily convex, which give 

{PS(C)!. CN, jsl = 2}. 

"*"     -~c^ .^JHLm**—.mm n^-ntfiMMMa «ta. —.!«_ 
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